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An experiment in a supersonic mixing layer at convective Mach number M ,  = 0.62 was 
performed to study the evolution of a flow from a turbulent boundary layer to a fully 
developed mixing layer. Turbulence measurements were taken and are interpreted with 
a diffusion model, which is well adapted to these flows. These measurements show that 
the level of turbulent friction varies with M ,  proportionally to the spread rate. Our 
measurements appear to be consistent with the spreading rate of the layer and suggest 
that compressibility does not significantly alter the diffusion scheme at M ,  = 0.62. This 
is also confirmed by a review of the existing data. Moreover, in the present flow, the 
anisotropy of the turbulent stresses seems to be affected by compressibility. The 
evolution of the radiated noise shows an increase corresponding to the developed part 
of the layer. Quantitative assessments of compressibility effects on turbulent quantities 
are given and are related to modifications in the structure of the flow. 

1. Introduction 
In high-speed mixing layers, the structure of turbulence is strongly affected by 

compressibility. For example, the spreading rate of the mixing layer decreases sharply 
with the Mach number (Sirieix & Solignac 1968; Brown & Roshko 1974) as compared 
to incompressible mixing layers at the same free-stream velocity and density ratios. 
Compressibility inhibits the entrainment of mass and, more generally, turbulent 
diffusion. 

A qualitative explanation of this phenomenon may be inferred from an analysis of 
the linear stability of a two-dimensional vortex sheet (Pai 1954; Miles 1958). This 
explanation has been recently popularized by many authors (Norman & Winkler 1985 ; 
Papamoschou & Roshko 1988); it considers the convection velocity (or more precisely 
the convective Mach number defined below) of the eddies in the mixing layer. If this 
velocity is supersonic with respect to the external flow (or in a equivalent way if the 
convective Mach number of the eddies is supersonic), the pressure perturbations 
induced by the eddies are Mach waves, and propagate very far into the outer flow. This 
peculiarity of high-speed flows may greatly alter the turbulent field. For example, some 
particular features may become important, such as eddy shocklets produced by the 
large eddies, or sonic disturbances as observed in jets by Oertel(l979). This simplified 
picture, which leads to significant modification of the turbulence models used for 
compressible flows (Zeman 1990; Sarkar et al. 1989) does not describe all the 
modifications due to compressibility. Stability analysis, numerical simulations 
(Sandham & Reynolds 1989) and flow visualizations (Clemens & Mungall990; Bonnet 
& Debisschop 1993) show that three-dimensional effects are also more important in 
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compressible flows. The key point of these analyses is, of course, to know the 
convection speed of the turbulent structure. Bogdanoff (1983) and Papamoschou 
(1986) have used the convective Mach number M ,  to quantify this compressibility 
effect. This Mach number is based on the velocity difference between the convection of 
the eddies and the external flow. It is evaluated in two-dimensional flows by the 
approximation of an isentropic compression in the vicinity of the stagnation point 
between any two vortices. This yields a first means of determining the convective Mach 
number. However, some experiments suggest that the isentropic approximation is not 
obeyed for M ,  > 0.6. The reasons for this departure are not yet completely known, 
although some suggestions have been proposed to explain the unexpected convection 
velocity measured in some flows. For example, there may exist eddy shocklets which 
lead to non-isentropic compression (Papamoschou 1989; Dimotakis 1991). From the 
experimental observations (Papamoschou 1989; Hall 1991 ; McIntyre & Settles 1991) 
it seems that for large values of the isentropic convective Mach number, the eddies 
move practically with the speed of one of the external flows. 

The goal of the present work is to help clarify the effect of compressibility on mixing 
layers through an experimental study of a mixing layer downstream of a splitter-plate 
trailing edge. The external Mach numbers of the initial boundary layers (M,  = 1.8 and 
M ,  = 0.3) are such that, according to Morkovin's hypothesis, only weak effects of 
Mach number should be found in the structure of turbulence of these initial boundary 
layers. It will be seen from experiments that the Mach number of fluctuations is about 
0.3 in the mixing layer. Therefore this experiment describes some developments of 
compressibility effects as the mixing layer approaches its asymptotic state. 

In the first part of this paper, the influence of compressibility on the turbulent fluxes 
is characterized by the use of a phenomenological analysis. This analysis is developed 
mainly to classify the experimental results. The experiment will then be described and 
followed by a presentation of the results for the mean and turbulent quantities, 
including measurements of radiated noise in the outer flow. Lastly, the results will be 
interpreted and discussed. 

2. Phenomenological background 
A shear layer is considered in which large eddies are formed. The velocity difference 

between the two external flows is AU = U,- U,. The eddies are assumed to be 
transported with a convection velocity U, and to diffuse momentum with an effective 
(turbulent) diffusivity coefficient ,ut. They have a characteristic lengthscale 6, where 6 
is some measure of the size of these eddies. A temporal analysis is proposed where it 
is supposed that the relevant parameter is the diffusion time in a convected frame of 
reference. This timescale, for supersonic flows with variable density, is assumed to have 
the form t = t(8, ,ut, p, M ) ,  where p is the density and M is a Mach number related to 
U?. From dimensional arguments, a form for this timescale can be 

t = k,(s, M )  8"lvt, 

where s = (p2/pl)  is the density ratio between the two external flows and vt = pt /p  with 
p chosen in the part of the flow where ,ut is significant. It is supposed that vt is nearly 
constant across the flow. The use of kinematic variable vt implies that k ,  is also a 
function of the density ratio s and not only of the Mach number. This expression 
suggests that in low-speed flows (M-zO) the diffusion time may depend on density 
variations. It implicitly assumes that the flow can be characterized only by s; therefore 
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it is expected that the results will hold mainly for flows in which the density profiles are 
practically self-similar. 

In the same way, the Mach-number dependence of k ,  implies that vortices may need 
a different time to grow if they produce shocklets, or if compressibility causes a change 
in their shape, for example by increasing their three-dimensionality. 

It will be assumed here that k, is independent of the Reynolds number. This 
assumption seems to be acceptable if the Reynolds number is large enough that the 
flow is fully turbulent. For large Reynolds numbers (for example if there are no effects 
of transition), increasing this parameter will correspond to the creation of small-scale 
structures. Such an effect can be observed in probability density functions or in energy 
spectra: the dissipative range becomes different from the energetic one, the 
Kolmogorov scale becomes smaller and the spectrum can contain very large- 
wavenumber components. However, this phenomenon involves small-scale fluctuations 
of lower and lower amplitude, so that, if the Reynolds number is large enough, their 
contribution to the energy or to the Reynolds stress is supposed to be practically 
negligible and, consequently, k, does not depend on the Reynolds number. 

The order of magnitude of the eddy diffusivity is now considered. It is assumed that 
ut is constant across the flow. This corresponds to the traditional model first introduced 
by Prandtl at the beginning of the century, and used by Gortler (quoted by Schlichting 
1964, pp. 689-690) to calculate the mean velocity profiles in free shear flows. A rather 
good approximation of their shape was then obtained. Second-order closures for these 
compressible flows can be found in Sarkar et al. (1989) and Zeman (1992) who included 
hypotheses to account for compressible turbulence. These models give a reasonable 
rate of spread for the supersonic mixing layer. The latter reference suggests that the 
eddy viscosity is practically constant in the main part of the flow, and it seems 
convenient to use this assumption for dimensional analysis. So, ut can be given by 

where u,2 = 7 / p ;  7 is the maximum shear stress level in the layer and p is the local mean 
density. The maximum velocity gradient (au/ay),,, is estimated as 

(auIaYY),,, = k,(AU/O 

From experimental evidence (Samimy & Elliott 1990; Dutton et al. 1990; Ikawa & 
Kubota 1975), the shape of the velocity profile is not sensitive to the Mach number. A 
more detailed analysis of necessary conditions for similarity has been proposed by 
Zeman (1992). It shows that compressibility introduces some difficulties in reaching a 
similar state, but the computations indicate that the shape of the velocity profile is not 
significantly affected by this effect in a wide range of convective Mach numbers up to 
4. Accordingly, it will be supposed that the shape of the velocity profile does not 
depend on the Mach number. 

Then k ,  is assumed constant, that is ?k,/dM = 0, and finally 

t = k,  k, 8(A U/u:) 

To transform the time dependence into a space variation we must define a convection 
velocity U,: x = U, t. U, is taken as a function of s and M ,  but does not have to be 
more precisely specified yet. In the simple representation currently used for a given 
flow, there is a single convection velocity, such that the eddies have a constant shape 
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as ‘frozen patterns’. The linear spreading of the mixing layer is 

The quantity K(s,M,) = k ,k ,  = (tu,2)/(8AU) which can be interpreted like a 
‘normalized diffusion time’ depends on Mach number and density ratio through 
k,. The function K(s,M,) has to be determined from experiment. If U, is known, 
Mach numbers with respect to the external flows can be defined as normal: 
M,, = (U,  - U,)/a,, Me, = (U,  - U,)/a,. When the eddies produce no shocklets, the 
convective Mach number can be defined as M e  = M,, = Me, = AU/(a,+a,). It is 
assumed, as proposed by Papamoschou (1989), that Me is a pertinent parameter to 
classify compressibility effects, even when Me, + M,,. Equation (1 a) has the same form 
as the estimate used by Brown & Roshko (1974) from dimensional arguments based on 
the momentum equation. In Brown & Roshko’s derivation some unspecified velocity 
scale U is found instead of U,. U is of the order of the average velocity, but is not 
defined as the local mean velocity. 

Relation ( l a )  corresponds to the spreading rate of a temporal mixing layer. The 
growth rate of the corresponding spatial mixing layer may be different because of the 
unsymmetric entrainment ratio of spatially evolving mixing layers as discussed by 
Dimotakis (1986). This author has proposed a model to represent the entrainment rate 
in mixing layers with variable density. It reproduces well the growth rate variation due 
to density ratio changes in subsonic mixing layers. A correction functionf, is deduced 
to obtain the spatial growth rate from the temporal one for subsonic mixing layers, and 
the expression for the spatial growth rate is obtained: 

where fd (s ,  M,) is a temporal-to-spatial correction function which depends on density 
ratio and convective Mach number. It is supposed here that s and Me are separable 
variables, such that the influence of s is the same for Me + 0 and for the high-speed case. 
For the range of density ratios corresponding to the compilation of data studied later 
in this paper (0.38 < s < 1.56) (see §4.2), Dimotakis’s correction functionf, gives very 
weak corrections (maximum 5 % )  to the growth rate value. This is rather low and 
seems negligible compared to the important decrease of the growth rate due to 
compressibility effects. 

Another possible way to express the spreading rate is the usual empirical expression 
proposed by Papamoschou (1986) : 

where (dsldx),,, is the spreading rate of the subsonic shear layer with U,, = 0 and 
constant density. $(Me) is a function of the convective Mach number. Note that 
Papamoschou (1986) assumes thatf, NN 1, but he points out that such a function should 
be introduced to compare the results of spatial and temporal theories. 

In addition, following Bogdanoff (1983) and Papamoschou & Roshko (1988), it will 
be assumed that the convective Mach number M ,  is the correct parameter to quantify 
compressibility effects, even if the determination of U, is questionable (Papamoschou 
1989; Dimotakis 1991). 
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Equations (1 b) and (2) combine to given an expression for K(s, M,): 

which can be rewritten to give an expression for the turbulent friction as a function of 
the spreading rate: 

The normalized diffusion time K(s,M,), which is a function of s and M,, has to be 
determined from experiments. If the influence of these parameters can be separated, the 
influence of the density ratio can be deduced from low-speed studies, while supersonic 
experiments will give us the Mach-number contribution. 

Concerning the density ratio influence on K,  unfortunately few data are available in 
subsonic flows (Fiedler, Lummer & Nottmeyer 1990 and Nottmeyer 1990 for mixing 
layers, Panchapakesan & Lumley 1993a, b and Djeridane et al. 1993 for jets). These 
results are partial and cover only a limited range of density ratios, so that they are of 
limited use for application to high-speed flows. An attempt has been made to use these 
data, but their scarcity and scatter made the determination of the density ratio 
influence on K(s,M,) inaccurate and it was preferred not to use them in the present 
work. 

However, it was felt that relations (1)-(4) could be used as useful guides to interpret 
data in supersonic mixing layers and suggest some links between turbulent friction and 
rate of spread. 

If the dependence of u, on M ,  is known, other results can be deduced for some 
turbulent quantities. For example, the maximum level of turbulence production may 
be estimated as 

Cef is the rate of turbulence production in a subsonic shear layer with the same velocity 
gradient. Then, if K is a weak function of M,  for a given s, turbulence production 
decreases with M ,  as the spreading rate. A last illustration of the influence of M ,  can 
be given by the length of dissipation, as used by Bradshaw & Ferriss (1971). A rough 
but significant approximation consists in assuming that production and dissipation 
rates are practically equal, P z E .  The dissipation length 1 is defined by e = u$/l. The 
dependence of 1/13 on M ,  is straightforward: 

P = ~,"(Au/a) = prefK(s, M J  #(MJ.  

1/13 = u,/Au = (l/a>ref[K(s, M,J +(MJI'. 
Again, if K is a weak function of s, this relation shows that a decrease of e, through 
$(Mc), is accompanied also by a decrease of 1/6 and suggests that smaller scales are 
involved in dissipation in compressible shear flows. 

3. Experimental results 
3.1. Experimental set-up 

The experiments were performed in the supersonic wind tunnel at IMST. This is a 
closed-circuit, continuously operating, supersonic wind tunnel. The stagnation 
conditions of the flow were kept practically constant for several hours. The test section 
was 15 x 14 cm2 and the level of turbulence in the nozzle was very low, typically 0.2 %. 
The mixing layer was obtained, as shown in figure 1 (a), by mixing two independently 
controlled streams separated by a splitter plate. The supersonic flow (flow 1) is the 
IMST supersonic wind tunnel flow. The stagnation pressure of this flow is 0.6 
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FIGURE 1. (a) Sketch of the experimental set-up (not to scale). (b)  Schlieren photograph of the mixing 
layer. The right side of the view is located at x = 50 mm and the left side at x = 200 mm. (c) 
Streamwise evolution of the low-speed sidewall pressure along the test section (pressure related to 
stagnation condition). 
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M U(m s-l) K(K) T(K) p(Kgm-3) 

Flow 1 1.79 48 1 296 180 0.208 
Flow 2 0.30 101 291 286 0.130 

TABLE 1 .  Main characteristics of the two flow fields 

atmospheres. It is kept constant by a regulated vacuum system. The other flow (flow 
2) is subsonic. Because of the particular shape of the test section, there was no room 
to design a classical complete settling chamber for the low-speed flow, and so the latter 
was homogenized using a screen of porous bronze. This screen acted also to damp 
turbulence. Characteristics of the incoming flows are given in $3.3.3. From these results 
it appears that the developed part of the mixing layer does not depend much on the 
particular conditions at the trailing edge (see $4.1). The mass flux of the subsonic 
stream was adjusted to produce an isobaric mixing layer. The Mach number M ,  in the 
outer flow was 1.8, and M ,  = 0.3 in the inner flow. The stagnation temperature was 
approximately atmospheric. The convective Mach number determined from isentropic 
relations was 0.62. Further details are given by Quine (1990). It should be noted that 
the initial boundary layer on the high-speed side was turbulent and fully developed. 
Measurements were taken over a distance equivalent to about 25 initial boundary-layer 
thicknesses, or 320 times the momentum thickness. A spark schlieren photograph of 
the flow is shown in figure 1 (b). The exposure time is about 1 ps. The trailing edge of 
the plate cannot be seen on this picture. The right end of the layer is located at 
x = 50 mm; the downstream sections where a pressure probe is visible correspond to 
x = 200 mm. Large-scale structures appear very clearly in the mixing layer. In the 
upper right part of the picture, Mach waves originating at the trailing edge can be seen. 
They are reflected by the upper wall, but they intercept the mixing layer far 
downstream from the last measurement section ( x  = 200 mm). Figure 1 (c) gives the 
distribution of static pressure along the lower wall of the test section. Note that no 
significant pressure gradient is applied to the layer. 

3.2. Mean fields 

Mean quantities were measured using classical methods: a flattened Pitot probe (height 
of the probe: 0.3 mm) for total pressure, a bevelled static probe (Type ONERA 20K10) 
for static pressure and a vented thermocouple for total temperature. Velocity, 
temperature and density were deduced from the direct measurements by the usual 
methods (Liepmann & Roshko 1962). 

The main characteristics of the flow are summarized in table 1. These characteristics 
give r = U J U ,  = 0.21; s = p2/p1 = 0.625 and M ,  = 0.62. 

Figures 2 (a)  and 2 (b)  show profiles of the mean velocity U at various locations. The 
origin of the frame of reference is located at the trailing edge of the flat plate, as 
indicated in figure ] (a ) .  The shapes of the profiles indicate the evolution from a 
boundary layer ( x  = 1 mm), to a mixing layer ( x  > 160 mm). Note that the wake 
rapidly disappears within the first sections because AU is rather large. 

Quine (1990) has shown that the boundary layer on the high-velocity side was 
turbulent and in equilibrium. Figure 3 shows the Van Driest transformed velocity 
profile in semi-logarithmic form. In applying the Van Driest transformation, 
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FIGURE 2. Mean velocity profiles. 

+ + + 

t + 

+ 

c = 64 mm 

++ ++ I 
i 

+++ 

: = 80 mm 

++ ++ i 
++ ++ 

d 

i 
c = 200 mm 

the experimental values of p were used. The friction velocity u, was calculated from the 
semi-empirical theory of Fernholz (1971). Figure 3 shows a satisfactory agreement with 
the law of the wall. The boundary layer developing on the low velocity side of the plate 
was very thin, with a thickness of less than 1 mm. This was probably laminar. The 
influence of the nature of this layer will be checked and will be discussed in $4. Table 
2 summarizes the main characteristics of the initial turbulent boundary layer. Me is the 
external Mach number. 

As was mentioned in the previous section, mixing layers are very sensitive to initial 
and boundary conditions. This was pointed out by Bradshaw (1966) for subsonic flows, 
and the review by Dimotakis (1991), including variable-density cases, confirms that 
macroscopic quantities like the spreading rate depend critically on the method used to 
produce the flow, such that huge scatter is found on these quantities, even at low speed. 



10 

a 120 
1 . 0 1  0 140 

5 0  160 

'. 

L 

3 * 180 

* 

-0.2 3 
-3 -2 -1 0 1 2 3 

Y* 
FIGURE 4. Dimensionless mean velocity profiles. 

s 
(mm) s* 0 Cf % 7, 

Me (0.995UJ (mm) (mm) H ( x  lo3) (ms-l) (Nm-2) 

1.79 9.7 2.18 0.78 2.79 2.02 19.2 45.22 
TABLE 2. Characteristics of the explored boundary layer (Quine 1990) 
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FIGURE 5. Streamwise growth of the 'Stanford' thickness. 

Detailed studies of the fluctuating field have been performed, for example by Dzioma 
& Fiedler (1985) and by Bell & Mehta (1990). They all conclude that the initial 
development of a mixing layer is controlled to a large extent by the perturbations of 
the initial boundary layer. In particular Bell & Mehta pointed out that, when the 
upstream boundary layers are turbulent, no organized structures with longitudinal 
vorticity can be observed. Such a phenomenon, if it occurs also in supersonic flows, can 
be important for the development of the three-dimensionality of turbulent structures, 
which can be enhanced by high speeds. The definition of the initial conditions is then 
important. In the present cse, on one side of the plate the boundary layer is turbulent. 
On the other side, the boundary layer is very thin and certainly laminar. At the trailing 
edge the chamfer angle is lo", and is probably important for the flow evolution in the 
first few millimeters downstream of the edge. 

Figure 4 presents dimensionless velocity profiles of U* = (U-  U J / (  U,  - U,) as a 
function of y* = (y-y2)/(y1-yz).  The edges of the layers were defined according to 
the recommendations of the Stanford Conferene (Kline, Cantwell & Lilley 1980), that 
is y1 (resp. yz)  is the point where U = U, + 0.91( U, - U,) (resp. 0.1; (U ,  - U,)). It appears 
that near the end of the measurement region the dimensionless profiles collapse with 
very small scatter, suggesting that the mean fields are approaching similarity. 

The longitudinal evolution of the mixing-layer thickness 6 = y ,  - yz  is plotted in 
figure 5.  The corresponding spreading rate near the end of the measurement sections 
has been compared to the so called 'Langley curve' proposed by Birch & Eggers (1973) 
and retained by P. Bradshaw for the Stanford Conference (Kline et al. 1980). It 
resulted from a compilation of the available mixing-layer spreading rate data (Kline 
et al. 1980). Newer data have been obtained by other authors (see for example 
Bogdanoff 1983; Chinzei et al. 1986; Papamoschou & Roshko 1988 for a review). 
These results are in satisfactory agreement with each other (figure 19), so that we can 
keep the Langley curve as a useful consensus. The more recent contributions to these 
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FIGURE 6. Turbulent friction in the developed mixing layer for extreme values of 
the spreading rate (x = 180 mm). 

studies, including turbulence measurements, will be included and discussed in $4.2. The 
present result is below the curve (8' = 0.0338 for M ,  = 0.62), suggesting that the 
asymptotic development of the layer is just being reached. Note that the interpretation 
may depend on the definition of 6. However, it has been shown (Quine 1990) that the 
thickness defined using the Pitot profiles is in excellent agreement with the results of 
Papamoschou ( 1  986). 

The turbulent shear stress was deduced from the mean measurements using the mean 
momentum equation with the assumption that the mean profiles are self-similar. As 
usual for this method, the longitudinal gradients are rather weak, and can only be 
determined with questionable accuracy. Several different curve fits were applied to the 
experimental data to calculate the gradients. This gives some indication of the range of 
validity of our results. The profiles at x = 180 mm are shown in figure 6. The shape of 
the profile is the expected one; the value of the maximum for the different 
determinations suggests an uncertainty of Ifr 10 % (Quine 1990). The present values will 
be compared to the results of other authors in $4. 

3.3. Turbulence measurements 
3.3.1. Measurement method 
- The aim of these measurements is to determine the variance of longitudinal velocity 
u ' ~ ,  of temperature T'2 and the correlation coefficient R,, inside and outside the mixing 
layer. A constant-current hot-wire anemometer was used. As the flow under 
investigation develops between two streams at Mach numbers of 1.8 and 0.3, the main 
part of the layer, and particularly the zone where the turbulence intensities reach their 
maximum, lies in the transonic regime. As indicated by Morkovin (1956) and 
Horstman & Rose (1977) hot-wire anemometry in transonic flow presents some 
difficulties. New methods were developed to calibrate the probes and to process the 
data (Dupont & Debikve 1989; Barre, Dupont & Dussauge 1 9 9 2 ~ ) .  They are briefly 
described below. 

The characteristic feature of hot-wire heat transfer at transonic speed and at 
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moderate (and low) Reynolds numbers is that the Nusselt number depends on both the 
Mach and Reynolds numbers. This implies that the wire is sensitive to mass flux, total 
temperature and Mach number. This causes two difficulties in the measurement 
procedure. First, calibrations should be performed versus Reynolds and Mach 
numbers. This has been done extensively, as described in Barre et al. (1992a) who give 
the Nusselt number us. Mach and Reynolds numbers in the range 0.3 < M < 1.5 and 
6 < Re,, < 28. Re,, is the Reynolds number obtained in terms of the local mean mass 
flux pu, the viscosity ,LA measured at the local total temperature and the wire diameter 
d :  Re,, = (pud)/p. The sensitivity coefficients were deduced according to classical 
formulae (Morkovin 1956). The results showed that the Mach-number sensitivity 
coefficient depends strongly on Reynolds number if Re,, < 15, which corresponds to 
the main part of the flow. It was also found that the range of transonic effects is roughly 
0.3 < M < 1.3. However, at lower Reynolds numbers (Re,, z lo) ,  the effects of Mach 
number may be ignored for M > I ,  while for Re,, z 20, the coefficients of sensitivity 
to Mach number are smaller, but have significant values up to M z 1.3. Second, the 
voltage fluctuation across the wire is 

e‘ (pu)’ M‘ T‘ B =  4,- + Fm -+ G L .  
P M T  

Squaring this expression and taking the average would produce a relation similar to 
Kovasznay’s (1953) fluctuation diagram. If F,,, Fm and G were linearly independent 
functions of overheating, it would be possible to measure the variances of mass flux, 
Mach number and total temperature. Unfortunately, over a large range of wire 
overheats q, and Fm are nearly proportional. The determination of the r.m.s. values 
((pu)’) and ( T i )  requires further assumptions. It appears that it is more convenient 
to rewrite equation (5 )  by introducing the pressure fluctuations instead of the Mach 
number fluctuations, through the linearized expression : 

M’ 

where a = ( 1  +f (y -  1)M2)- l  and /3 = (7- 1)M2a.  
The pressure fluctuation has to be specified. Examples are given below for two 

particular cases of practical interest. First, in shear flows where vorticity is strong, the 
‘no sound’ assumption is used, as in Kovasznay (1953) and Dupont & Debieve (1989): 
p’ /p  4 p’/p. Pressure fluctuations are neglected in (6), and the fluctuation voltage 
becomes 

where 

It is then possible to measure ((pu)’), ( T ; )  and their correlation coefficient R,,,, Tt and 
to deduce (u’), ( T ) ,  and R,, using the classical method. 

This assumption (p’/p 4 p’/p), which is valid in zero-pressure-gradient subsonic and 
supersonic boundary layers, has also been used for our mixing layer. It has been 
verified by Barre et al. (1992a) that this method is suitable for measurements in the 
initial boundary layer and in the mixing layer (see $3.3.2 and figure 8) .  

The second case under examination corresponds to external flows, where data 
reduction should be performed by the method proposed by Laufer (1961). In this 
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situation pressure fluctuations induced by turbulent eddies are significant, the acoustic 
mode is predominant, and the correct approximation consists in assuming that 
pressure, temperature and density fluctuations are linked by isentropic relations : 

P’IP = YP‘IP = (Y / (Y  - 1)) T’IT. 
The Mach number fluctuations are 

Then the voltage fluctuation can be expressed as 

with 

In the present case, the Mach number of the high-speed side is MI = 1.8, so that 
F, = 0, F, = F,;,, and G, = G. Then Laufer’s method remains unchanged. On the low- 
velocity side M ,  = 0.3 -- and the contribution of F, again seems negligible. It is then 
possible to determine u”, p’,  and their correlation coefficients in the external flows. 

Moreover, in the supersonic external flow, the velocity of the sources of aerodynamic 
noise may be measured as described by Laufer (1961). This method assumes that the 
pressure fluctuations in the outer flow are isentropic. If they are produced by plane 
Mach waves it is possible to determine the speed of the sources. Although there is no 
obvious relationship between the convective velocity of the large-scale structures of the 
layer and the source speed, it was hoped that this parameter could give an indication 
on the dynamics of the energetic turbulent vortices (see g3.3.3 for further discussion). 

3.3.2. Characteristics of the anemometer 
The hot-wire probe was made of a tungsten wire of 5 pm in diameter welded to the 

prongs. The probe was a standard Dantec probe type No. 55Pll; its stiffness was 
enhanced by putting a drop of glue between the prongs. The aspect ratio of the wire 
was 240. In the external flows and on the edges of the layer, it was checked that the wire 
was not affected by vibrations. In the middle of the layer, the turbulence intensities are 
high and induce a strong excitation on the wire, making it difficult to have a wire free 
from strain gauge effects. For the present measurements, an estimate of the error has 
been made from the spectra of the signal. It showed that the contribution of this effect 
is about 15 YO to (u’),  at the maximum of the turbulence intensity. The time constant 
of the wire was measured in situ by the square-wave method as described in 
Arzoumanian & Debieve (1989). In this method the wire response to a square wave is 
recorded by an HP computer after being low-pass filtered at 35 kHz. The resulting 
signal was phase averaged over the period of the square wave in order to eliminate the 
spurious turbulent component superimposed on the response. Exponential curves were 
then fitted by a least-squares method. The value of the time constant was then deduced. 
This procedure proved to be efficient : it saved time, it was repeatable and avoided the 
subjective aspect of the visual setting. The bandwidth of the compensated anemometer 
was 200 kHz. If structures of wavelength 6 are convected at velocity U,, they produce 
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FIGURE 7. Power spectral density measured in the mixing layer (high-pass filter = 1 kHz, 

overheating ratio = 0.4) at x = 64 mm. (a) y = 12 mm, (b) y = -20 mm. 

a characteristic frequency UJS  of about 15 kHz in our case. The cutoff of the 
electronics is therefore about 13 times the characteristic frequency, and more than 
adequate to measure the energy of the signal in shear flows according to Kistler's 
criterion (Kistler 1959; Smits & Dussauge 1989). Finally, the fluctuation diagram was 
determined by measurements at 14 overheats, ranging from zero to 0.45. 
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zone, range of the available velocity fluctuation data in supersonic boundary layers, including hot- 
wire and laser-Doppler measurements. 

3.3.3. Experimental results 
In this subsection, three sets of results are presented: the fluctuations in the initial 

flows, turbulence measurements in the mixing layer, and the longitudinal evolution of 
the induced fluctuations in the outer flows. 

Just downstream of the trailing edge, at x = 1 mm, the r.m.s. value of the velocity 
fluctuations is 1.14 m s-l in the supersonic flow and 3.8 m s-l in the subsonic flow. This 
gives ( (u ’ ) /AU)  = 0.3 YO and ( (u ’ ) /AU)  = 1 % respectively for the outer and the inner 
flows. These values correspond to practically the same intensity of pressure fluctuations 
in both flows, ( p ’ ) / p z  1 %. 

In the inner flow, turbulence is generated as it enters the tunnel by the plate of porous 
bronze (see figure 1 a). This turbulence decays between the base and the trailing edge 
and it was checked that ( ( U ’ ) / U ) ~  decays proportionally to l / x ,  as for grid-generated 
turbulence (see for example Hinze 1959). 

Spectra of the hot-wire signal were measured in both external flows, at x = 64 mm 
(figures 7 a and 7 b), at an overheat ratio of 0.4, so that the signal is nearly proportional 
to the mass flux fluctuation. The range of frequencies involved in the supersonic and 
in the subsonic flows is rather different. As expected, higher frequencies are found in 
the supersonic flow, but in both cases broadband spectra without peaks are observed: 
the mixing layer is not excited at a particular frequency. 

Velocity measurements were performed in the initial boundary layer. They are 
presented in Morkovin’s representation in figure 8, where r, is the wall friction. They 
show very clearly that the transonic calibration is very important in the present case: 
processing the data with Mach-number effects produces significant differences for 
M < 1.3. The largest error is observed near the wall, where M z 1, and reached 40 YO 
for (u’).  The results are in excellent agreement with previous data of other authors, 
confirming that the initial boundary layer on the high-velocity side is turbulent and 
fully developed. 

Figure 9 presents the profiles of the r.m.s. velocity fluctuations (u’) in the mixing 
3 F L M  259 
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(b) mixing layer approaching asymptotic state. 

layer, normalized by the velocity difference across the layer, AU = U, - U,. Again, the 
longitudinal evolution can be seen: the flow starts with profiles corresponding to an 
equilibrium boundary layer and in the last sections the shape corresponds to a mixing 
layer. There is a rapid increase in the fluctuation level up to x = 100 mm, but 
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downstream the evolutions become weaker. A more careful examination reveals an 
overshoot in the maximum level, near x = 160 mm. This is illustrated by figure 10 
where the maximum values us. longitudinal distance are shown. They are compared 
with an asymptotic level, deduced from a compilation of the existing data (figure 21) 
which will be discussed in 94. Anticipating this analysis suggests that the mixing layer 
is practically fully developed. This seems to be confirmed by the evolution of the shape 
of the profiles when normalized by the maximum value at each location (figure 11). 
There is still some scatter which, to some extent, may hide the trends, but the tendency 

3-2 



64 

Q 
c 
k 

. 
v 

10 - 

5 -  

S.  Barre, C. Quine and J .  P. Dussauge 

* 100 
a 120 

160 
180 * 200 

A 

P *a 
s 0 

* * 8 * 
Q 

8 
0 

8dp 
-3 -2 -1 0 1 2 3 

Y *  

FIGURE 12. Temperature fluctuations in the developed part of the mixing layer. 

1.5 

1.3 

1.1 

c 
d 
m 

0.9 

% 
0 

X 

A 
0 * O  * *  

*0* 

6 %!I go* * 
a 9  0 * 

o * *  

*Q 0 
O *  

0 

O 

X (mm) * 100 
A 120 

160 
0180 * 200 

0.5 4 I 

FIGURE 13. Verification of the strong Reynolds analogy relation. 

seems to be a collapse of the data at the last three measurement stations. Similar 
evolutions are observed in the measurements of the temperature fluctuation intensity 
(T')/AT(figure 12) where AT = - T,. From the present results it is possible to check 
whether the result of the Strong Reynolds Analogy (SRA) still holds (Morkovin 1962; 
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Gaviglio 1987). The result is given in figure 13 for the central part of the layer where 
SRA is the ratio: 

Near the edges of the mixing layer, because of the intermittency, the assumptions used 
to reduce the data are more crude and the results are less reliable. The analogy 
corresponds to the value SRA = 1, and to a velocity-temperature correlation 
coefficient equal to - 1. It appears that this relationship seems to hold well, as in other 
supersonic flows without heat sources. A sufficient condition to obtain relation (8) is 
that the total enthalpy flux is small compared to the enthalpy flux (Morkovin 1962), 
and as our flow included no heat sources, it is not surprising to find that the SRA ratio 
remains practically equal to unity. The correlation coefficient (figure 14) supports this 
interpretation: it is remarkably constant in the layer and has a value near -0.9. 

Finally, the r.m.s. pressure fluctuations ( p ’ ) / p  were measured in the external flows 
(figure 15). On both sides of the layer, there is an increase in the r.m.s. pressure level, 
reaching a maximum in the vicinity of the maximum of the velocity fluctuations. From 
the measurements of ( p ‘ ) / p  in the external flow it is possible, using Laufer’s method 
(Laufer 1961), to deduce the speed of the aerodynamic noise sources involved in this 
flow. The main points of this method can be briefly summarized as follows. Since the 
external flows can be presumed isentropic, we use the following assumption: 

P ’ / P  = Yco’/P) = ( Y / ( Y -  ”’/n. 
This equation shows that the intensity of the entropy mode is negligible in the external 
flows (Kovasznay 1953). 

Moreover, if we assume that the fluctuation field in the external flow is a ‘ pure sound 
field’ giving a pressure-velocity correlation coefficient of k l(Rup = f 1) and that it 
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corresponds to plane sound waves, we can find a relation between velocity and pressure 
fluctuations : 

u’/ u = (cos OM) (P’I YP), 

where 8 is the angle between the normal to the wave front and the direction of the mean 
flow; M is the local mean Mach number. 

It is now possible to calculate a mean orientation of the waves and, in turn, to obtain 
a mean propagation velocity of the sound sources U, since 

(U-  U J / a  = - l/(cos8); 

a being the local speed of sound we can easily write 

On the supersonic side, the speed of the sources of aerodynamic noise Us was deduced 
from the hot-wire measurements (figure 16). In the initial boundary layer the ratio 
U J U ,  is about +; this value is in good agreement with Laufer’s (1961) results for 
equilibrium supersonic boundary layers at M = 1.8. Further downstream, U, decreases 
and has a value of about 100ms-l for x > 100mm. Then it seems that the 
perturbations producing the most significant part of the plane wave noise radiated into 
the supersonic flow travel with a velocity of the order of the velocity of the subsonic 
flow. 

In fact, in the present flow, where compressibility effects are weak ( M ,  = 0.62), it is 
possible to assume that large structures are convected at a subsonic Mach number with 
respect to the external flows. So, the acoustic perturbations due to the convection of 
these eddies are probably waves with exponential decay and not plane Mach waves. It 
is not very surprising to find U2 as the noise source velocity because AU is of the order 
of the sound speed in this layer, making the subsonic flow (flow 2) the most significant 
plane Mach wave source detectable with the present measurement method when the 
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0 

hot-wire probe is placed in the supersonic free stream. In a more compressible mixing 
layer with M ,  greater than unity, this method would probably be appropriate for 
obtaining the convection velocity of the large eddies because the most significant plane 
sound wave sources in such a flow are the large eddies. This has been investigated by 
Hall (1991) with an optical method. 

On the subsonic side the situation was not so clear because of the sound field 
superimposed on the incoming turbulence in the secondary flow. The intensity of these 
vortical fluctuations was at least as large as the fluctuations radiated by the eddies. This 
made the present method inappropriate for the determination of Us on the subsonic 
side. 

4. Discussion 
4.1. The development of the mixing layer and its sensitivity to initial conditions 

Mixing layers are flows which are very sensitive to initial and boundary conditions. In 
the present study, the first evidence of a self-similar state was found from the mean 
density profiles at the last stations, at a distance from the trailing edge of about 350 
times the initial momentum thickness. It seems difficult to predict the distance required 
for supersonic shear layers to become fully developed, but Dutton et al. (1990) 
proposed a criterion based on the Reynolds number Re = AUS/v, where v is the 
average kinematic viscosity. They found from their experiments that the flow is fully 
developed when Re is approximately lo5. Our results agree with this criterion, since 
Re z 1.6 x lo5 at the last stations of our measurements. 

The full development of the layer seems to be reached after an overshoot on the 
maximum of (u’), located at a point coinciding with an increase of the r.m.s. pressure 
level, but the reasons for this overshoot are not well understood. The schlieren 
photograph and the wall pressure measurements (figure 1 a and 1 b) suggest that no 
undesired wave system can explain the observed overshoot. A more precise 
investigation of this point was made by inspection of the static pressure profiles (figure 
17). It appears that in all the sections there is a slight imbalance of pressure between 
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(pressure related to stagnation condition). 

the supersonic and the subsonic flow, typically 2 %. This difference is observed in all 
sections. So the overshoot of the r.m.s. velocity cannot be explained by an interaction 
of the layer with a parasitic wave. By reference to the phenomena usually related to 
mixing layers, it may be speculated either that some pairing is occurring, or that the 
layer experiences compressibility effects and the energetic structures become highly 
three-dimensional. Further discussion will be given in $4.2. 

It was also checked that the final level does not depend on the initial conditions. 
When large V-shaped roughnesses (0.7 mm high commercially available DEMO tape) 
were put on the plate on the low-velocity side to perturb significantly the thin (laminar) 
boundary layer, it was found that, within the range of accuracy of the measurements, 
no effect on the level of at x = 160 mm, was observed (see figure 18 a). This confirms 
the high level of fluctuations found in this section. Similarly, it was suspected that 
possible three-dimensional effects could be triggered by turbulent perturbations 
coming from the sidewall. To check this effect, inclined plates were put on the sidewalls 
at the trailing edge and formed a 7" divergent. They were supposed to modify the 
evolution of the boundary layer by changing the perturbation at the junction between 
the sidewalls and the trailing edge. The results at x = 120 mm (see figure 186) showed 
no sensitivity to this modification of the initial conditions. It was concluded that, if the 
r.m.s. velocity fluctuations are considered, the final state, corresponding to the fully 
developed state, was virtually independent of the initial conditions. 

4.2. Discussion on the compressibility ejects 
A compilation of the available normalized spreading rate data calculated with equation 
(2) is shown in figure 19 where we have plotted the Langley curve and the experimental 
values of $(Me) deduced using the isentropic estimates of U, in (2). In this 
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representation, as recalled in $2, M ,  = AU/(a,+a,)  is kept as the parameter 
characterizing the compressibility effects. The overall agreement seems quite close to 
the Langley consensus except for some flows like the present experiment and also that 
of Debisschop (1993). This discrepancy will be discussed later in this section by 
comparison with the turbulent diffusion model proposed in equations (3) and (4). It 
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may be remarked that Chinzei et aZ.’s (1986) data show an excellent agreement with the 
Langley correlation except for their case at M,  = 0.25 where, probably, the flow is not 
completely developed. 

The measured level of turbulent friction obtained in the present experiment has been 
compared to the results of the other authors as shown in figure 20, which presents 
( - - U ’ U ’ ) ~ ~ , J ( A U ) ~  as a function of M,. Note that, at low Mach numbers, some high 
values of the shear stress are observed: the data point from Dutton et al. (1990) at 
M ,  = 0.2 is too high, but this flow is perhaps not completely developed and is probably 
more a wake than a mixing layer (Dutton, private communication, 1991). The laser 
measurements by Lau, Morris & Fisher (1979) are too high, as noticed by the authors 
themselves. An assessment of the systematic error can be deduced from Lau (198 1) by 
accepting their corrections on 2 and their comparisons with hot-wire measurements. 
The results plotted in figure 20 take this effect into account. However the resulting 
value for M ,  = 0.15 is higher than the average level. It can be seen that the present 
shear stress is below the trend of the other measurements. This shear stress value is 
deduced from the mean measurements by the mean momentum balance. The method 
leads to an uncertainty of & 10% (see $3.2 and Quine 1990), which, therefore cannot 
explain the observed discrepancy. Although the mean velocity profiles are self-similar 
and have the usual shape, the layer is perhaps just reaching the asymptotic state: 
turbulence data are generally more sensitive to this effect than mean quantities and 
perhaps have not reached the asymptotic value. Another element of explanation is that 
in our experiment the turbulence level of the external flows is probably lower than in 
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FIGURE 20. Variation of the measured dimensionless turbulent shear stress by different authors (see 
figure 19 for legend). The solid line represents the shear stress deduced from the spreading rates of 
the ‘Langley curve’ using K = 0.17 in equation (4). 

the others considered in the present compilation. It was felt however that this fact could 
not explain entirely the observed discrepancy. A last possible explanation is that these 
different flow cases cannot be compared in such a straightforward way. Equation (4) 
suggests that the density ratio can affect the turbulence level through K. This was 
examined for the present flow cases. It appears that most of the supersonic flows 
considered in figure 20 have a density ratio close to 0.6, so that the influence of this 
parameter in figure 20 cannot be large. 

Finally, relations (3) and (4) were used as possible guides for interpreting the results. 
Our low friction level then seems consistent with the rather low value of the spreading 
rate which was deduced from the present experiment (see figure 19). These two 
measured values have been used together with relation (3) to determine K assuming 
that the isentropic estimation of U, is a convenient choice since the present convective 
Mach number is not high ( M ,  = 0.62). The resulting value obtained for Kis 0.16, which 
is close to the one obtained in subsonic experiments (0.17 for Bradshaw 1966, 0.13 for 
Wygnansky & Fiedler 1970 and 0.14 for Liepman & Laufer 1947). It can be noticed 
from Nottmeyer’s (1990) and Fiedler et d ’ s  (1990) results, for a density ratio in the 
range (0.6 6 s 6 l),  that the influence of s on K is rather low and not strong enough 
to change significantly the observed agreement on K between low-speed flows 
(Nottmeyer 1990; Wygnanski & Fiedler 1970; Liepmann & Laufer 1947) and the 
present experiment. So, considering this agreement on K, (4) has been used to illustrate 
this. Figure 20 shows the computed variations of (- U’V’), , , /(AU)~ obtained from 
relation (4) using K = 0.17 and the function $(&I,) given by the Stanford consensus 
(‘Langley curve’). The overall agreement is good and it was checked that it was closely 
achieved for flows whose spreading rate is close to the one given by the Langley 
consensus (see figure 19). 
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the present reassessment of the measurements. 

The conclusion that can be drawn from the results on friction is that supersonic 
mixing layers can be described adequately by a turbulent diffusion scheme which 
relates the turbulent friction and the spreading rate. This relation is based on a 
characteristic diffusion time in a convected frame of reference K(s, Me).  This diffusion 
time seems nearly independent of the convective Mach number at least up to 
Me = 0.62. Moreover, if the Langley consensus gives a correct evaluation of the 
spreading rate of compressible mixing layers, it seems that some flows do not fully 
agree with this correlation. It has been shown by Dimotakis (1991) that, even in 
subsonic cases, it is difficult to define an overall consensus on the spreading rate of 
mixing layers. This is certainly due to the high sensitivity to external conditions of these 
flows as stated by Bradshaw (1966). However, the present turbulent diffusion scheme 
seems to be able to describe a large group of mixing layers even if their spreading rate 
is not in close agreement with the Langley consensus, as in the present case. This 
diffusion scheme may provide a basis for a better correlation, but need to be 
investigated for larger convective Mach numbers and for other density ratios. 

is of particular interest, since Smits et al. (1989) have shown 
that in high-speed boundary layers, turbulence anisotropy seems to be changed by 
compressibility. A better test would be to consider 3, this stress being probably a 
better indicator of anisotropy modifications. However this quantity could not be 
measured in the present work. The results on u’2/AU2 are shown in figure 21. As 
discussed previously for the shear stress, some reservations may be expressed on the 
generality of such a plot, probably due to the influence of the density ratio s which is 
not really the same in all flows. Rather unexpectedly, the scatter is larger than for 
- u’v’. Concerning Dutton et al.’s data for MA= 0.2, the high value is probably due to 
- a lack of flow development as discussed for u’v’. The present measurements show that 
U ‘ ~ / A U ~  for Me = 0.62 is lower than in subsonic cases. While the present turbulent 

The examination of 



1.5 - 

0 

o* 

+ 

a 

9'9 + *  0 
x *  * 

0 0.5 1 .o 
Mc 

5 

_ _ -  
FIGURE 22. Variation of the ratio (- u'u')/uf2 as a function of M ,  (see figure 19 for legend). 

Arrow indicates the present reassessment of the measurements. 

friction was found to be lower than the average of other authors, u'"/AU2 is consistent 
with most of the supersonic data, excepted those of Dutton ~- et al. (1990), and suggest 
that this quantity decreases with increasing M,. The ratio u'o'/u'~ is plotted in figure 
22 and is found to be about 0.2 for the present flow case, where the maximum value 
of in section x = 200 mm has been used. The departure from the subsonic value is 
rather large. However, it is difficult to determine accurately the considered ratio 
because of a possible accumulation of uncertainties : typical inaccuracies on ( u ' )  and 
on - u'd were estimated at about 10 YO. 

The measured variation is then at the limit of the experimental errors. It is however 
believed that our results indicate an effect of compressibility on Reynolds stress 
anisotropy. (It should be mentioned that there is a flaw in figure 4 of Dupont et al. 
1993, leading to an underestimation of 30 % in u'".) The trend indicated -~ by other data 
is not clear: Dutton et al.'s data suggest an increase of u/2 and of d2/  - u'u', while the 
data given by Ikawa & Kubota (1975), and Wagner (1973) show the opposite trend. A 
reassessment of the data of Ikawa (1973) and Wagner (1973) has been performed. It 
was suspected that there might be some hot-wire transonic calibration effects at the 
maximum of the turbulence intensity, not taken in account in these two experiments. 
However, in general the stagnation temperature is barely affected by such conditions 
(Barre et al. 1992a). The measured r.m.s. value of the stagnation temperature has 
therefore been retained. As there are no heat sources in Ikawa's flow, and as the heat 
fluxes are moderate in Wagner's experiment, it was assumed that the SRA can be 
___-  applied and that Rut is constant (ItUt = -0.9). The resulting values of u'2/AU2 and 
-u'v'/u'~ are shown in figures 21 and 22 by arrows. Again it is difficult to draw 
conclusions because our evaluation is very crude and not very accurate, but the 
maximum reassessed values do not contradict a decrease of -u'u'/u'~ for large M,. 

_ _ _  
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However, the apparent agreement of the present measurements with Dutton et al.’s 
results on anisotropy are not obtained for the same reasons: in the present case, this 
decrease is due to a low value of the shear stress and not to a high value of 2. 
Additional experiments with well-defined flow conditions and well-controlled 
measurement methods are needed to answer this question at large convective Mach 
numbers. 

A last finding to be explained is the overshoot in the longitudinal evolution of the 
maximum of (figure 10); it corresponds to an extremum of p’2 in the outer flows. 
At the location of the overshoot, a more rapid penetration of the shear layer into the 
low-speed flow is observed from both mean measurements and schlieren visualizations 
(figure 1 b). In this zone, it is also more difficult to see large-scale structures, which seem 
to lose their coherence. It should be stressed that this decrease of u’2 downstream of the 
overshoot occurs in sections where the external level ofp’2 increases. Therefore it seems 
that energy is transferred from the turbulent motion to the acoustic fluctuations in the 
external flow. Also, it may be noted that the ‘turbulent’ Mach number (u ’ ) /a  is about 
0.27 at the maximum, which would indicate that compressibility effects can occur 
(Sarkar et al. 1989; Zeman 1990). Thus, the asymptotic mixing layer would be obtained 
through a region producing significant vertical velocity fluctuations contributing to a 
widening of the layer and creating pressure fluctuations in the external flows. As 
speculated in 94.1 a candidate for explaining this trend could be the pairing of the 
eddies. It would yet be necessary to explain why the pairing occurs in a rather well- 
defined part of the flow. The coupling due to pressure waves travelling in the subsonic 
flow could participate in such a phenomenon. However, this needs to be explored 
systematically in future experimental work, initiated in Dupont et al. (1993). It should 
also kept in mind that an increase in the three-dimensionality of the large eddies, as 
previously reported by Clemens & Mungal(l990) and Samimy, Reeder & Elliot (1992), 
may occur and will have to be checked by measurements. 

An attempt was also made to use the turbulent diffusion model to estimate the 
convection velocity U,. This velocity can be extracted from relation ( 3 )  as 

Knowing K, d&/dx and (- U’~’),,,/(AU)~ for each mixing layer it becomes possible to 
obtain an estimate of U, from (9). 

This was done in Barre, Dupont & Dussauge (1992b) for all the studied mixing 
layers using the value K = 0.17. The values of U, given by this method are scattered 
because of the uncertainties in - u’u’ and d&/dx: these quantities are known with an 
error of the order of 10 YO and so it is difficult to recommend the use of relation (9) as 
an accurate method for determining Ui .  However, it is interesting to note that an 
overall agreement was found with the available direct measurements. Three classes of 
flows were found: layers where U, is close to the isentropic estimation, and cases where 
U, is close to either U, or U,. The few experiments where the confinement is not large 
are in the first class. This is the case for our experiment, for which preliminary direct 
determination of U, from two-point hot-wire measurements (Barre et al. 1992b) 
confirmed this result. It was argued in Si-Ameur et al. (1992) and in Barre (1993) that 
confinement could be the cause of non-isentropic values of U,, for convective Mach 
numbers in the range 0.5 to 1. This sort of results suggests the following picture: if the 
present diffusion scheme holds and if the value of K is not affected by compressibility 
up to M,  = 1 (and equal to the value given by the present experiment), the normalized 
diffusion time is the same for all the flows. For fully developed layers, the scatter 
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observed in the spreading rate (see figure 19) would be due to non-isentropic 
convection velocities, and may be related to the confinement of the flows. 

A last point which requires some comment is the relation between the speed of sound 
sources and the convection velocity of the large structures. A simple and perhaps na'ive 
guess could consist in assuming that the flow is formed of nearly two-dimensional 
structures with attached Mach waves. Then, if the latter are the main sound sources, 
the source speed would be essentially the convective velocity. As noticed previously, Us 
in the developed part of the layer is practically the low-speed stream velocity, 
Us z 100 m s-l, while the isentropic convective velocity is U, = 3 11 m s-l. An 
interpretation of this result may be proposed by considering linear stability theory. 
Blumen, Drazin & Billings (1975) have shown that for M ,  > I there can exist unstable 
modes having supersonic phase speeds with respect to one external flow and subsonic 
with respect to another one. A perturbation with phase speed close to the lower velocity 
can radiate noise into the other external flow. In the present case ( M ,  = 0.62) such 
convection velocities are found, but at a Mach number lower than those of the 
theoretical prediction, so that the main noise sources have a phase speed very different 
from the convection velocity. 

5 .  Conclusions 
The experiment presented in this work describes the evolution of mean and turbulent 

fields from boundary layers to a turbulent mixing layer at a convective Mach number 
of M ,  = 0.62. The turbulent Mach number based on the r.m.s. velocity is in the range 
0.27-0.3, such that characteristics of compressible turbulence can be found. One of the 
goals of this study was to produce a flow with low external levels of turbulence and 
well-defined initial conditions. The experimental method was elaborated with particular 
care in order to confirm experimental knowledge of the structure of turbulence in 
supersonic mixing layers. At the last measurements stations, the mixing layer was close 
to self-similarity. It was also verified that the properties of the developed mixing layer 
do not depend critically on the initial conditions. A simple turbulent diffusion model 
was developed as a guide for the interpretation of the results. In this model, 
compressibility mainly affects eddy viscosity and convection velocity; a diffusion 
constant K, which is proportional to the ratio of the turbulent friction and the spread 
rate, has to be determined from experiments as a function of density ratio and Mach 
number. The first conclusion from this experimental determination is that K does not 
depend on convective Mach number for M ,  < 0.62 and also probably for M ,  < 1. This 
supports the idea that the turbulent diffusion time is the relevant parameter of the 
problem. A consequence is that turbulent friction decreases with the Mach number 
proportionally to the spreading rate, and the diffusion model seems to be suitable for 
representing the effect of the Mach number on such layers. 

The influence of compressibility on 2 is not so clear. The present measurements 
suggest that the ratio p/ -m may be larger than in low-speed layers, and accordingly 
the anisotropy of the Reynolds stress tensor may vary. For larger M,, existing data 
show contradictory trends, but a modification in the anisotropy is a likely guess at high 
convective Mach numbers. Well-controlled experiments are needed to address this 
point. In the present experiment, the developed state of the mixing layer is achieved 
through an overshoot in the level of 2 accompanied by strong radiation of acoustic 
fluctuations in the external flows. 

Some aspects of the influence of high speeds on the turbulence structure in 
supersonic mixing layers have been evaluated and clarified. The conclusions confirm 
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that turbulent diffusion in free shear flows depends mainly on large-scale structures and 
that compressibility effects on statistical quantities like Reynolds stresses can be 
observed for M ,  2 0.6, but some new experiments are required to check the influence 
of Mach number on turbulence anisotropy, and on its space-time properties, like the 
three-dimensionality of the large-scale structures and their convection velocity. 
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